

MONTHLY DENGUE UPDATES

A publication of the National Dengue Control Unit Ministry of Health, Sri Lanka

Volume 01 Issue 03

CONTENTS

April 2021

PAGE

1.	Featuring article	1
2.	Summary of entomological and epidemiological surveillance data –February-March 2021	3
3.	Dengue forecast	6
4.	News updates	6

Use of indoor residual spraying for control of *Aedes* adult mosquitos in Sri Lanka

Dengue is one of the important vector-borne diseases in Sri Lanka. Globally, it has spread over 130 countries affecting nearly 3.9 billion people annually. While dengue has become endemic in Sri Lanka over the last few decades, recurring outbreaks are observed mainly due to environmental, viral and vector related factors.

Integrated Vector Management (IVM) approach described as, "a rational decision-making process for the optimal use of resources for vector control" adopted by World Health Organization since 2007. Vector control measures in dengue target different life cycle stages of the vector. For adult mosquito control, fogging is used to rapidly bring down infected adult mosquito population during outbreaks.

However, new research needs to be carried out systematically to identify novel measures in dengue control.

What is Indoor Residual Spraying (IRS)?

IRS is the application of a long-lasting, residual insecticide to potential resting surfaces of vectors such as walls, eaves and ceilings of houses or structures (including domestic animal shelters), where such vectors might come into contact (Operational manual for indoor residual spraying for malaria transmission control and elimination Second edition 2015).

This method has long been in use for control of malaria, where the vector mosquito rests in the above mentioned sites. Same strategy has been adopted to control *Aedes* mosquito in some countries, reporting 86% - 96% reduction in dengue transmission in the Australian city of Cairns (Vazquez-Prokopec et al., 2010; Vazquez-Prokopec et al., 2017a) and has satisfactorily controlled pyrethroid-resistant vector population (Vazquez-Prokopec et al., 2017b). Likewise, the Latin American countries widely use IRS in controlling adult *Aedes* mosquitoes. Therefore, it is important to perform research in local setting to assess the effectiveness of IRS in Sri Lanka.

Difference between IRS and space spraying

In space spraying, insecticide is converted into particles by compression and released as droplets in to the space. Thus, insecticide droplets which come into contact with the mosquitoes are absorbed by their body surface leading to death, whereas during IRS, the death of mosquito occurs by absorbing the insecticide sprayed on to the resting surfaces of the mosquito within the household.

Use of IRS for Aedes control

During space spraying, only the *Aedes* mosquitoes active in the environment during that limited time period are killed. The environmental factors and technical factors leading to different droplet sizes may affect the chemical floating time in the air and thus the period of contact with the vector in the environment. However during IRS, due to residual effect chemical may stay active for a long period of time (3-6 months) on the surface. Though the viable period may differ according to the chemical used, the relatively long lasting effect gives considerable benefits against repeated use in short term during space spraying.

Other major advantage of IRS is that it does not depend on the weather condition at the time of spraying, thus allowing IRS possible at any time of the day.

Important factors to be considered for implementing IRS for the two dengue vector species, *Aedes aegypti* and *Aedes albopictus*

Vector bionomics

During IRS, important vector bionomics to consider are resting places and the biting pattern of the vectors. The knowledge on common resting places and preferred height of the resting places; the conditions where they are active and bite humans are important in planning IRS. These known norms can be experimented during IRS to generate new knowledge specific to local setting as there is lack of data regarding *Aedes* vectors in Sri Lanka.

Seasonal density and distribution of the vector

The knowledge on geographical vector distribution is important in planning IRS activities to assess effectiveness for the two species separately. The mapping of the distribution of two vector species at PHI/ MOH level would enable to identify areas for IRS for two species separately. However, for those areas, seasonal fluctuations of the vector densities also have to be considered. By carrying out IRS in these settings, we can develop more knowledge on the type of insecticide and the period of effectiveness.

Resting and feeding behavior

In gathering data on adult mosquitos, indoor hand collection via mouth aspiration technique needs to be carried out. By using the mouth aspirator, we can get accurate information about the collected mosquitoes such as resting area, resting surface, resting height and resting species individually and by mosquito species. For unreachable surfaces, mechanical aspirators such as prokopack could be used to assess the above data.

Insecticide susceptibility status

Accurate susceptibility status of the insecticides that are used for IRS is crucial for effectiveness of this approach. Therefore, regular susceptibility testing for insecticides needs to be carried out. Application of residual spraying of insecticide for which the vector has developed resistance, will be unsuccessful and unproductive.

In general, the chemical used in IRS in Sri Lanka for Aedes control is Lambda cyhalothrin. It is recommended to gather more scientifically plausible evidence in different local settings for generalized use.

References

(1) Pan American Health Organization. Manual for Indoor Residual Spraying in Urban Areas for Aedes aegypti Control. Washington,

D.C.: PAHO; 2019. http://iris.paho.org

(2) Vazquez-Prokopec, G. M., Kitron, U., Montgomery, B., Horne, P., & Ritchie, S. A. (2010). Quantifying the Spatial Dimension of Dengue Virus Epidemic Spread within a Tropical Urban Environment. PLoS Neglected Tropical Diseases, 4(12), e920.

https://doi.org/10.1371/journal.pntd.0000920

(3) Vazquez-Prokopec, G. M., Montgomery, B. L., Horne, P., Clennon, J. A., & Ritchie, S. A. (2017). Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission. Science Advances, 3(2). https://doi.org/10.1126/sciadv.1602024

Complied and edited by: Dr. Nimalka Pannila Hetti, Consultant Community Physician/ NDCU and Mr. D.D. Dissanayaka – Health Entomological Officer/ NDCU

2. SUMMARY OF ENTOMOLOGICAL AND EPIDEMIOLOGICAL SURVEILLANCE DATA – March 2021

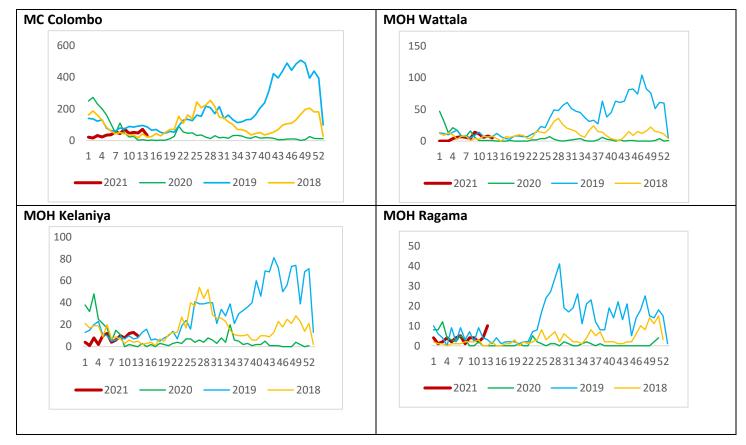
	Ħ			Epidemiological surveillance data			
Ice			(Source	(Source – Epidemiology Unit)			
Province	District	No.	of Premi	ses		Month	
Pro	ā	Inspected	Positive premises	Positive %	Main types of containers positive for larvae and Percentage positivity (%)	March	Cumulative
	Colombo	1500	149	9.93	Discarded items (37.4), tyres (10.9), temporary removed items (20.4)	280	562
	Colombo MC	270	33	12.2	Tyre (10), temporary removed items (46), non-used cisterns (11)	86	187
WP	Gampaha	827	100	12.09	temporary removed items (13.5), Discarded items (21.9), covering items (11)	147	392
	Kalutara	2700	241	8.93	temporary removed items (17.5), covering items(13.5), Discarded items(28.3)		
	NIHS	905	99	10.94	temporary removed items (41), water storage barrel(8.9), discarded items(19)	108	276
	Kandy	2499	97	3.88	water storage barrel (25.5), Discarded items(12.3), tyres (12.3)	49	178
СР	Matale	1100	33	3	Cement tanks (32.4), Discarded items(24.3), covering items(13.5)	12	28
	NuwaraEliya				Data not received	6	15
	Galle	2600	219	8.42	Discarded items(23.2), other water storage containers(13.8), ornamentals(13.1)	16	68
SP	Hambantota				Data not received	34	90
	Matara	1811	148	8.17	other water storage containers(20), ornamentals(14.4), Discarded items(22.8)	31	97
	Jaffna	1908	75	3.93	Other water storage items(15.1), discarded items(44.5), ornamentals(6.7)	23	85
	Kilinochchi	600	18	3	water storage barrels(15.8), temporary removed items(36.8), Discarded items(15.8)	0	19
NP	Mannar	1054	64	6.07	Discarded items(30.4),water storage barrel(17.4), non-used cisterns(14.1)	6	13
	Vavuniya	2072	53	2.56	Other water storage containers (35.3), discarded items (14.5), Pet feeding cups(11.3), ornamental (11.3)	8	21
	Mullativu				Data not received	0	3

Volume 01 Issue 03

-

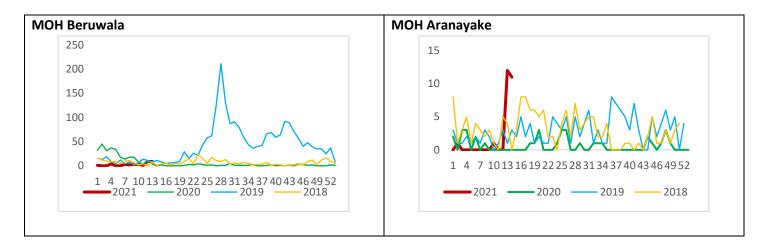
.

	Batticaloa	2777	113	4.06	temporary removed items (28), other items (27), ornamentals (8)	493	2589
EP	Ampara				Data not received	5	11
	Trincomalee	1455	48	3.3	Water storage barrels (18.5), other water storage items (22.2), other items(18.5)	29	69
	Kalmunai	968	113	11.67	Discarded items (22.6), other items (24.7), temporary removed items (17.1)	57	150
	Kurunegala	2606	249	9.55	Cement tanks (11.2), refrigerator trays(12.5), Discarded items(24.4)	126	261
NWP	Puttalam	706	36	5.1	Pet feeding cups (23.5), water storage barrel (19.6), temporary removed items (9.8), ornamentals (9.8),tyres (9.8)	37	116
NCP	Anuradhapur a	523	49	9.37	temporary removed items(41.3),water storage barrel(12.7),discarded items(11.1)	11	32
NCF	Polonnaruwa	687	48	6.9	Discarded items(39), temporary removed items(10), other water storage containers(13)	10	20
UP	Badulla	332	28	8.43	Cement tanks(20.6), other water storage containers(26.5) ,Discarded items(23.5)	7	22
UP	Monaragala	2216	202	9.12	water storage barrels(15.5),covering items(9.6), Discarded items(49.9)	13	32
SGP	Rathnapura	1489	141	9.47	Discarded items(48),covering items(15),tyres(10), temporary removed items(10)	65	159
	Kegalle	3219	178	5.53	Discarded items(21.8),ornamentals(16.6), water storage barrel(19)	47	96
Sri Lanka		36,834	2534	6.88	Discarded containers(27),temporary removed items(12), water storage barrel(8), other water storage containers(8)	1706	5591


Summaries of Adult Surveys						
District	МОН	GN area	Findings			
Kalutara	Bulathsinhala	819H,	Survey started	No of premises examined: 30		
(17.03.21)		Gamagewatta	:8.40am	No of posive premises: 07		
			End time:11.50am	No of positive mosquitoes: 09 unfed		
				Aedes albopictus female mosquitoes		

Volume 01 Issue 03

Batticaloa	Eravur	Locality:Ladies	Survey started	No of premises examined: 20		
(16.03.21)		market road	:8.30am	No of positive premises: 01		
			End time:2.45pm	No of positive mosquitoes: 02 (blood fed		
				mosquito and semi gravid mosquito)		
Badulla	Hali-Ela	Bogahamadiththa	Survey started	No of premises examined: 10		
(18.03.21)			:9.35am	No of posive premises: 0		
			End time:11.40am	No of positive mosquitoes: 0		
Resistance monitoring						
District	Sentinel site	Findings				
Kalmunai	Location:	Species: Aedes	Exposure mortality=			
	Kalmunai North	aegypti	89%			
		Tested for 0.8%	Control mortality=			
		Malathion	00			


Current high risk MOOH

Epidemiological trends (Source: DenSys data)

Volume 01 Issue 03

April 2021

3. DENGUE FORECAST

Γ

Entomological forecast of high risk areas				
RDHS	МОН	GN Division		
Rathnapura	Rathnapura PS	Kahangama		
Homagama	Homagama	PHI area: Habarakada(Ranala Road)		

4. NEWS UPDATES

Special Mosquito Control Campaign: 30th March 2021-	Release of Aedes adult male sterile mosquitos: A
01 st April2021	project led by university of Kelaniya in collaboration
A SMCC conducted in 29 high risk MOH areas in Western	with NDCU, 29.03.2021
province. The health, police and tri-forces participated in	Professor Janaki De S. Hewavisenthi, Dean, Faculty of
the premise inspections.	Medicine/ University of Kelaniya, as the chief guest
	along with the Director/NDCU and the Molecular
	Biology team at the first release of sterile mosquitoes
	at Keedarammulla area in Gampaha district.

Contractor

A CONTRACTOR OF A STATE

Technical Support Group meeting: 24.03.2021

Technical Support Group meeting for prevention and control of dengue. The meeting chaired by Director General of Health Services, attended by experts from preventive and curative sectors.

Knowledge sharing sessions: 19th February 2021 This month's speakers were; Dr. Suraj Perera (CCP- National Cancer Control programme) Dr. Indika Weerasinghe (Medical Officer- NDCU)

Ms. Thilini Wickramatunga (Molecular Biologist-World Mosquito Programme)

5. Cage bio assay – 04.04.2021

NDCU warmly welcomes articles for **FEATURING ARTICLE** section and news updates on dengue related events for **NEWS UPDATES** column of this report.

National Dengue Control Unit,	Address:
Public Health Complex,	
555/5, ElvitigalaMawatha,	
Colombo 05.	

Comments and contributions for publication in the DUR Sri Lanka are welcome. Prior approval should be obtained from the NDCU before publishing data in this publication.

National Dengue Control Unit, Ministry of Health, Sri Lanka555/5, Public health Complex, ElvitigalaMawatha, Narahenpita, Colombo 05.Tel: +94(0) 112368416/7Fax: +94(0) 11 2369893Email: ndcu2010@yahoo.comWeb: http://www.dengue.health.gov.lk